Multipass membrane protein structure prediction using Rosetta.
نویسندگان
چکیده
We describe the adaptation of the Rosetta de novo structure prediction method for prediction of helical transmembrane protein structures. The membrane environment is modeled by embedding the protein chain into a model membrane represented by parallel planes defining hydrophobic, interface, and polar membrane layers for each energy evaluation. The optimal embedding is determined by maximizing the exposure of surface hydrophobic residues within the membrane and minimizing hydrophobic exposure outside of the membrane. Protein conformations are built up using the Rosetta fragment assembly method and evaluated using a new membrane-specific version of the Rosetta low-resolution energy function in which residue-residue and residue-environment interactions are functions of the membrane layer in addition to amino acid identity, distance, and density. We find that lower energy and more native-like structures are achieved by sequential addition of helices to a growing chain, which may mimic some aspects of helical protein biogenesis after translocation, rather than folding the whole chain simultaneously as in the Rosetta soluble protein prediction method. In tests on 12 membrane proteins for which the structure is known, between 51 and 145 residues were predicted with root-mean-square deviation <4 A from the native structure.
منابع مشابه
Protein structure prediction and analysis using the Robetta server
The Robetta server (http://robetta.bakerlab.org) provides automated tools for protein structure prediction and analysis. For structure prediction, sequences submitted to the server are parsed into putative domains and structural models are generated using either comparative modeling or de novo structure prediction methods. If a confident match to a protein of known structure is found using BLAS...
متن کاملPractically Useful: What the Rosetta Protein Modeling Suite Can Do for You
The objective of this review is to enable researchers to use the software package Rosetta for biochemical and biomedicinal studies. We provide a brief review of the six most frequent research problems tackled with Rosetta. For each of these six tasks, we provide a tutorial that illustrates a basic Rosetta protocol. The Rosetta method was originally developed for de novo protein structure predic...
متن کاملFully automated ab initio protein structure prediction using I-STES, HMMSTR and ROSETTA
MOTIVATION The Monte Carlo fragment insertion method for protein tertiary structure prediction (ROSETTA) of Baker and others, has been merged with the I-SITES library of sequence structure motifs and the HMMSTR model for local structure in proteins, to form a new public server for the ab initio prediction of protein structure. The server performs several tasks in addition to tertiary structure ...
متن کاملStructure prediction for CASP8 with all-atom refinement using Rosetta.
We describe predictions made using the Rosetta structure prediction methodology for the Eighth Critical Assessment of Techniques for Protein Structure Prediction. Aggressive sampling and all-atom refinement were carried out for nearly all targets. A combination of alignment methodologies was used to generate starting models from a range of templates, and the models were then subjected to Rosett...
متن کاملFull title Improved de novo Structure Prediction in CASP11 by Incorporating Co-evolution Information into Rosetta Short title Structure Prediction using Co-evolution
We describe CASP11 de novo blind structure predictions made using the Rosetta structure prediction methodology with both automatic and human assisted protocols. Model accuracy was generally improved using co-evolution derived residue-residue contact information as restraints during Rosetta conformational sampling and refinement, particularly when the number of sequences in the family was more t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proteins
دوره 62 4 شماره
صفحات -
تاریخ انتشار 2006